Detailed Mechanistic Study of the Non-enzymatic Formation of the Discoipyrrole Family of Natural Products
نویسندگان
چکیده
Discoipyrroles A-D (DPA-DPD) are recently discovered natural products produced by the marine bacterium Bacillus hunanensis that exhibit anticancer properties in vitro. Initial biosynthetic studies demonstrated that DPA is formed in the liquid fermentation medium of B. hunanensis from three secreted metabolites through an unknown but protein-independent mechanism. The increased identification of natural products that depend on non-enzymatic steps creates a significant need to understand how these different reactions can occur. In this work, we utilized (15)N-labeled starting materials and continuous high-sensitivity (1)H-(15)N HMBC NMR spectroscopy to resolve scarce reaction intermediates of the non-enzymatic discoipyrrole reaction as they formed in real time. This information guided supplemental experiments using (13)C- and (18)O-labeled materials to elucidate the details of DPA's non-enzymatic biosynthesis, which features a highly concerted pyrrole formation and necessary O2-mediated oxidation. We have illustrated a novel way of using isotopically enhanced two-dimensional NMR spectroscopy to interrogate reaction mechanisms as they occur. In addition, these findings add to our growing knowledge of how multicomponent non-enzymatic reactions can occur through inherently reactive bacterial metabolites.
منابع مشابه
Comparative evaluation of enzymatic and non-enzymatic antioxidants of petal of three species of saffron (Crocus caspius, C. sativus, C. speciosus)
Nowadays, the use of a wide range of medicinal herbs such as saffron and its aromatic compounds is increasingly being regarded as natural sources of antioxidant properties. In addition to saffron stigma, saffron petal is a rich herbal source of antioxidant compounds. The present study was conducted in a completely randomized design with three replications to study some of the enzymatic and non-...
متن کاملPlatinum-oxygen Bond Formation: Kinetic and Mechanistic Studies
Reaction of [PtMe(C^N)(SMe2)] (C^N = 2-phenylpyridinate (ppy); 1a, C^N = benzo[h]quinolate, (bhq); 1b) with hydrogen peroxide gives the platinum(IV) complexes trans-[PtMe(OH)2(C^N)(H2O)] (C^N = ppy; 3a, C^N = bhq, 3b) bearing platinum-oxygen bonds. The Pt(II) complexes 1a and 1b have 5dπ(Pt)→π*(C^N) MLCT band in the visible region which is used to easily follow the kinetic of its reaction with ...
متن کاملSurveying the Effect of Hydroalcoholic Extract of Allium hirtifolium on Glycated Hemoglobin Formation in In-vitro Condition
Background & Objectives: Non enzymatic glycation is a reaction that occurs between reducing sugars and amino groups of proteins. Advanced Glycation End-products (AGE) have been accounted for principal biological processes like aging and pathogenesis of some diseases. Accumulation of AGE during hyperglycemia can cause structural and functional changes of long-lived proteins. Therefore, it will...
متن کاملToxicity of Arsenic (III) on Isolated Liver Mitochondria: A New Mechanistic Approach
Arsenic exposure mainly through food and water has been shown to be associated with increased incidence of numerous cancers and non-cancer harmful health. It is also used in cancer chemotherapy and treatment of several cancer types due to its apoptogenic effects in the various cancer and normal cell lines. We have already reported that liver is the storage site and important target organ in As ...
متن کاملToxicity of Arsenic (III) on Isolated Liver Mitochondria: A New Mechanistic Approach
Arsenic exposure mainly through food and water has been shown to be associated with increased incidence of numerous cancers and non-cancer harmful health. It is also used in cancer chemotherapy and treatment of several cancer types due to its apoptogenic effects in the various cancer and normal cell lines. We have already reported that liver is the storage site and important target organ in As ...
متن کامل